What Makes A Successful Grid Application?

Jim Gray (Microsoft)
Alex Szalay (Johns Hopkins)
Presentation at
Earth System Science & Applications Advisory
Committee
(NASA - ESSAAC)
San Diego, Ca
18 Feb 2004

Thesis

- Definition:
 - Success == Wide use
- Thesis:
 - Successful Grid App == Content + Applications

Examples

Content

Applications

- Web
- Mosaic, Navigator...
 AltaVista, Yahoo!,Google ...
- eMail
- AOL, HotMail, ...

- BB/Chat
- AOL, ICQ, IM,

- NLM
- Genbank, PubMed, BLAST, Entrez,
- USGS
- TerraServer, National Map Map Point, Map Quest...
- NASA
- EOS/DIS?

- Download (FTP and GREP) are not adequate
 - You can GREP 1 MB in a second
 - You can GREP 1 GB in a minute
 - You can GREP 1 TB in 2 days
 - You can GREP 1 PB in 3 years.
- Oh!, and 1PB ~10,000 disks
- At some point we need indices to limit search parallel data search and analysis
- This is where databases can help
- Next generation technique: Data Exploration
 - Bring the analysis to the data!

Near-line Data Is Dead Data Tape Archives = Data Roach Motels

- Tape-based data has bad data access
- Now that disk data is 1M\$ / Petabyte
 Tape is not worth the trouble
 More expensive overall

Need CONTENT + ACCESS

TerraServer: TerraService.Net

- Popular geo-spatial app
 - Averages 40k visitors / day; 1 million map views
 - NET Web Service OpenGIS web map server
 - Dynamic Map Re-projection
 - UTM to Geographic projection
 - Dynamic texture mapping
- Used in production applications
 - USDA, EPA, FEMA
- New Data
 - 1 foot resolution natural color imagery
 - Census Tiger data
- Lights Out Management
 - MOM
 - Auto-backup / restore on drive failure

TerraServer V4

- 8 web front end
- 4x8cpu+4GB DB
- 18TB triplicate disks Classic SAN (tape not shown)
- ~2M\$
- Worked GREAT!
- 2000...2003
- Now replaced by V5

TerraServer V5

- Storage Bricks
 - "White-box commodity servers"
 - 4tb raw / 2TB Raid1 SATA storage
 - Dual Xeon 2.4ghz, 4GB RAM
- Partitioned Databases (PACS partitioned array)
 - 3 Storage Bricks = 1 TerraServer data ++
 - Data partitioned across 20 databases (~containers)
 - More data & partitions coming
- Low Cost Availability
 - 4 copies of the data
 - RAID1 SATA Mirroring
 - 2 redundant "Bunches"
 - Spare brick to repair failed brick 2N+1 design
 - Web Application "bunch aware"
 - Load balances between redundant databases
 - Fails over to surviving database on failure
- ~100K\$ capital expense.

Next-Generation Data Analysis

- Looking for
 - Needles in haystacks the Higgs particle
 - Haystacks: Dark matter, Dark energy
- Needles are easier than haystacks
- Global statistics have poor scaling
 - Correlation functions are N², likelihood techniques N³
- As data and computers grow at same rate, we can only keep up with $N \log N$
- A way out?
 - Relax notion of optimal (data is fuzzy, answers are approximate)
 - Don't assume infinite computational resources or memory
- Combination of statistics & computer science

Analysis and Databases

- Much statistical analysis deals with
 - Creating uniform samples –
 - data filtering
 - Assembling relevant subsets
 - Estimating completeness
 - censoring bad data
 - Counting and building histograms
 - Generating Monte-Carlo subsets
 - Likelihood calculations
 - Hypothesis testing
- Traditionally these are performed on files
- Most of these tasks are much better done inside a database
- Move Mohamed to the mountain, not the mountain to Mohamed.

Organization & Algorithms

- Use of clever data structures (trees, cubes):
 - Up-front creation cost, but only N logN access cost
 - Large speedup during the analysis
 - Tree-codes for correlations (A. Moore et al 2001)
 - Data Cubes for OLAP (all vendors)
- Fast, approximate heuristic algorithms
 - No need to be more accurate than cosmic variance
 - Fast CMB analysis by Szapudi et al (2001)
 - $N \log N$ instead of $N^3 => 1$ day instead of 10 million years
- Take cost of computation into account
 - Controlled level of accuracy
 - Best result in a given time, given our computing resources

Why Is Astronomy Special?

- Data has no commercial value
 - No privacy concerns, freely share results with others
 - Great for experimenting with algorithms
- Data is real and well documented
 - High-dimensional (with confidence intervals)
 - Spatial, temporal
- Diverse and distributed
 - Many different instruments from many different places and many different times
- The questions are interesting
- There is a lot of it (soon Petabytes)

The Virtual Observatory

- Many new surveys are coming
 - SDSS is a dry run for the next ones
 - LSST will be 5TB/night
- All the data will be on the Internet
 - ftp, web services…
- Data and applications will be associated with the projects
 - Distributed world wide, cross-indexed
 - Federation is a must
- The world's best telescope
 - World Wide Telescope
- Finds the "needle in the haystack"
- Successful demonstrations in Jan'03

Short History of the VO

- Driven by exponential data growth
- Started with SDSS + GriPhyN

- Recognized that data will never be centralized
- Continued with NVO (NSF ITR)
- International Virtual Observatory Alliance
 - Now in 15 countries
 - Total data holdings >300TB
- Core services and standards adopted
- Getting ready for first deployment (mid04)

SkyServer.SDSS.org

- A modern archive
 - Raw Pixel data lives in file servers
 - Catalog data (derived objects) lives in Database
 - Online query to any and all
- Also used for education
 - 150 hours of online Astronomy
 - Implicitly teaches data analysis
- Interesting things
 - Spatial data search
 - Client query interface via Java Applet
 - Query interface via Web, Emacs, Perl SOAP,...
 - Popular -- 1% of Terraserver ☺
 - Cloned by other surveys (a template design)
 - Web services are core of it.

Federation: SkyQuery.Net

- Combine 4 archives initially
- Now 11 Archives
- Send query to portal, portal joins data from archives.
- Problem: want to do multi-step data analystem (not just single query).
- Solution: Allow personal databases on portal
- Problem: some queries are monsters
- Solution: "batch schedule" on portal server, Deposits answer in personal database.

Extending the SDSS Batch Query System to the National Virtual Observatory Grid

SkyQuery Structure

- Each SkyNode publishes
 - Schema Web Service
 - Database Web Service

Portal

- Plans Query (2 phase)
- Integrates answers

Interesting Things

- SkyQuery is the most functional Web Service on GriPhyN
- http://skyservice.pha.jhu.edu/develop/vo/adql/
- Now the prototype for an Open Architecture
- Being copied onto Oracle/DB2, Linux, ...
- Good test of .NET interop
- Good side-by-side comparison of .NET

Thesis

- Definition:
 - Success == Wide use
- Thesis:
 - Successful Grid App == Content + Applications

Oh! Forgot tomentom
"Object ty Science"